

 Toggle navigation

 Navigation

 	 Home
	 Archives
	 Contact
	 RSS Feed

 RBleug

 Regilero's blog; Mostly tech things about web stuff.

 Web Security, Dompdf security issues details

 Dec 19, 2016
 english and security

 details of december 2015's 3 CVE in dompdf, with one RCE.

 English version (Version Française disponible sur makina corpus).
estimated read time: 5min

Dompdf?

If you do not know DomPDF, that's a really nice library to render PDF document with PHP scripts.
I mean it, for anyone which already have had to use some other HTML to PDF converters, this library looks very nice.

Now, this lib made a thing that I consider a huge mistake for a library,
they provided, for years, a nice gui, directly in the library. From this GUI you
could check your settings, test the library tools, etc.

This looks like a nice tool, and in term of pure marketing (targeted to
developers and integrators), that's a really powerful utility.

But in the past this has lead to some security issues, like this CVE-2014-2383,
"Information disclosure, arbitrary file read".

And in this post I'll describe 3 new CVE, discovered after this one, first
reported to the project in june 2014, and fixed in version 0.6.2 in december 2015 (so, almost 2016).

Note that the 0.7 branch is not impacted. Note also that the CVE year is 2014,
but anything downloaded before end of december 2015 was quite certainly impacted.

	CVE-2014-5011 : Information Disclosure
	CVE-2014-5012 : DOS (Deny of Service)
	CVE-2014-5013 : RCE (Remote Code Execution), complement of CVE-2014-2383

fixed in 0.6.2 ?

if you check the RELEASES page of the project, and download versions 0.6.0, 0.6.1 and 0.6.2,
to check the differences, you will lose part of the real history.
Version 0.6.1 has been fixed in github fixed after initial release.
You can have a different 0.6.1 version if you downloaded it before.

The RCE issue has been removed from 0.6.1 but was in fact present in this
version if you downloaded it before (quite certainly before december 2015).

CVE-2014-5011 : Information Disclosure

This issue is the easy one.

The library has long been releasing a www directory, with some PHP files inside.

Most PHP installation will run any PHP set in the web document root (note that
it's a good security thing to avoid that and restrict PHP execution to the bootstrapper
only -- index.php --, if you can, and if your application is modern you certainly could, unless
it's Drupal8, because, because, I don't know why they keep putting all libraries
and all PHP sources in the document root, please help me close this parenthesis).

So, you have this directory, with a lot of PHP scripts available. And one of these
scripts is www/setup.php.

This script is the definition of an information Disclosure, with real versions
and paths printed on a public page:

Look at some of theses settings:

Various fix has been applied on this issue, mainly restricting access on setup
and some other places to localhost only, so that these pages should not be indexed
by google anymore, and that no hacker could use it to inspect your application
security level so easily.

Some other informations leaks were available at www/debugger.php and www/fonts.php.

We'll see below with the RCE that this disclosure is a really big problem if
some settings are not at the right value.

CVE-2014-5012: Deny of Service

The library provide an example of implementation, used in the GUI screens,
especially on a demonstration page.

This script is dompdf.php.

You can try to use it on some very heavy examples, like the full utf-8 render.
Costly public script, but not enough for a realy DOS vector.

But a real not-nice-at-all-call is requesting the render of the dompdf configuration file (I first
tried it to check if I would get a pdf with the library settings rendered):

dompdf/dompdf.php?base_path=&options[Attachment]=0&input_file=dompdf_config.inc.php

Something goes wrong while dompdf is trying to render this file, and the
script will never end his task (not until php max memory is reached).

That's a better Deny of Service vector.

And now a Remote command execution ...

Back to the old CVE-2014-2383

This previous CVE CVE-2014-2383 (which is not mine) was available on
version 0.6.0 (now a really old version).

The attack used php://filter to extract any file readable by PHP on the server
(open_basedir is a limitation on which file are available, and finding path to files is not always easy, but refer to the
Information Disclosure problem for a full access to open_basedir setting value or paths).

It also used the dompdf.php file, present in the library, which is necessary for
the gui demonstrations, but is in fact useless for most dompdf integration (it
means one of the simplest way of fixing this issue, the DOS and the RCE is to
remove this file).

Say, if you want to read the /etc/passwd file you can try something like
/dompdf.php?input_file=php://filter/read=convert.base64-encode/resource=/etc/passwd and
the result, in a PDF document, is this file, simply base64 encoded (use base64
decode and you have the file content). The php://filter+base64 trick is the
new way of doing local file inclusions with modern PHP.

This issue was fixed in 0.6.1.

The php:// filter support was removed.

CVE-2014-5013 RCE: exploit data uri instead of php:// filter

An RCE, or Remote Code Execution is a very bad issue. It means attackers can run
their own PHP code on your server. From that you cannot do a lot of things.

Before giving the details, I'll give the first counter measures.

	Do not allow DOMPDF_ENABLE_PHP : that's the default setting, it's forbidden
by default, if you ever enabled that please remove it, right now. This setting's default
protected you from the previous php:// filter attack also.
	Do not allow DOMPDF_ENABLE_REMOTE : same thing, default is false, if you
set true remove it, right now, or set your dompdf version to 0.6.2 or greater.

Note that the Information Disclosure issue will reveal theses settings to
everybody, even google.

Let's first have a look at theses strange settings, that you should not allow,
from the config file:

/**
* Enable inline PHP
*
* If this setting is set to true then DOMPDF will automatically evaluate
* inline PHP contained within <script type="text/php"> ... </script> tags.
*
* Attention!
* Enabling this for documents you do not trust (e.g. arbitrary remote html
* pages) is a security risk. Inline scripts are run with the same level of
* system access available to dompdf. Set this option to false (recommended)
* if you wish to process untrusted documents.
*
* @var bool
*/
def("DOMPDF_ENABLE_PHP", false);

/**
 * Enable remote file access
 *
 * If this setting is set to true, DOMPDF will access remote sites for
 * images and CSS files as required.
 * This is required for part of test case www/test/image_variants.html through www/examples.php
 *
 * Attention!
 * This can be a security risk, in particular in combination with DOMPDF_ENABLE_PHP and
 * allowing remote access to dompdf.php or on allowing remote html code to be passed to
 * $dompdf = new DOMPDF(); $dompdf->load_html(...);
 * This allows anonymous users to download legally doubtful internet content which on
 * tracing back appears to being downloaded by your server, or allows malicious php code
 * in remote html pages to be executed by your server with your account privileges.
 *
 * @var bool
 */
def("DOMPDF_ENABLE_REMOTE", false);

Reading that I wonder why people would activate these settings ? In fact the
enable_remote is the easiest way to have images in your PDF, if you have
absolute domains uri for images you will need to enable this option to have
dompdf fetch the image and render it.

The enable_php part is worst, it is a way of defining PDF specific tasks in a
php script, using an HTML template. with some provided variables like $pdf,
$PAGE_NUM and $PAGE_COUNT. The new versions use css markup for such tasks.
Using a PHP eval to run this sort of task was a bad idea. It leads to a real call to
eval() in the code, that we will exploit.

The dompdf.php script can render a pdf, the input_file parameter could be a file,
but also a protocol. Anything detected as a remote protocol will only be available
in enable_remote mode.

The previous security issue used the php:// protocol, which was then filtered.

The data:// protocol is not blocked and is sometime used to embed images in the
PDF by giving the full encoded image as a data uri parameter.

The old trick for dompdf images was using HTML sources in this form:

Using data to embed images in the PDF is a nice hack, if you have never seen a
data-uri image check github's 404 pages HTML sources.

But the data-uri protocol is not limited to images support.
It can embed any mime document. A php script for example is a document with
mime type application/x-httpd-php (you could also try XML files for XXE issues).

Let's say I have this small PHP script:

<?php
echo 'PHP RCE : ' . phpversion();
echo "bye";
?>

Note that I could do some other things in PHP, that's just an example.

In a data URI source this same PHP script content can be written like that (base64 encoding is just a way of rewritting something in ascii-7):

data:application/x-httpd-php;charset=utf-8;base64,PD9waHANCmVjaG8gJ1BIUCBSQ0UgOiAnIC4gcGhwdmVyc2lvbigpOw0KZWNobyAiYnllIjsNCj8+

With some url encoding (because we'll use that on an url) that is:

data%3Aapplication%2Fx-httpd-php%3Bcharset%3Dutf-8%3Bbase64%2CPD9waHANCmVjaG8gJ1BIUCBSQ0UgOiAnIC4gcGhwdmVyc2lvbigpOw0KZWNobyAiYnllIjsNCj8%2B

And the final attack is:

http://<target>/<path>/dompdf/dompdf.php?base_path=&options[Attachment]=0&input_file=data%3Aapplication%2Fx-httpd-php%3Bcharset%3Dutf-8%3Bbase64%2CPD9waHANCmluY2x1ZGUgKCcvZXRjL3Bhc3N3ZCcpOw0KZWNobyAiYnllIjsNCj8%2B

If default settings for DOMPDF_ENABLE_PHP and DOMPDF_ENABLE_REMOTE are
altered (to true) this attack will successfully run the PHP script and render
the output of this script to a PDF document (which is in fact only an optionnal side-effect).
This Can be used for local or remote
file inclusion, but also to edit or create a php file, run a shell script, etc.
Chances are this exploit would be used to connect your server in a botnet.

Last words

	Avoid using eval() in your web code
	Avoid adding demonstrations to your libraries, or ensure that they will not
run in production
	Update your dompdf installation. Version 0.7 is a revolution, it may be hard
to switch to that version, but moving an old 0.6.0 or 0.6.1 version to 0.6.2
should be straightforward, if it breaks something revert the code and check next
point.
	if you use dompdf in a cms, you can safely remove the www subdirectory
and the dompdf.php file in that library, rename it first if you do not
believe me, the CMS is quite certainly using the library classes, and not the
demonstration code and runner.
	if you enabled the two dangerous settings, then revert it even if it breaks
something (choose between breaking a features and giving your server to spammers)
	if you use a modern PHP application, please put PHP libraries outside of the
web document root.

 Tags: CVE, Injection, Security

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Related posts

 Web Security, using bad HTML to escape from a DIV

 Break HTML layouts with only bad HTML and the browser's help.

 Security: HTTP Smuggling, Apache Traffic Server

 details of CVE-2018-8004 (August 2018 - Apache Traffic Server).

 Security: HTTP Smuggling, Jetty

 details of CVE-2017-7656, CVE-2017-7657 and CVE-2017-7658 (June 2018 - Jetty).

 Security: HTTP Smuggling, Apsis Pound load balancer

 details of CVE-2016-10711 (published feb 2018).

 Checking HTTP Smuggling issues in 2015 - Part1

 First part of the 2015 HTTP Smuggling articles. Injecting HTTP in HTTP, the theory.

 Latest posts

 Security: HTTP Smuggling, Apache Traffic Server

 Security: HTTP Smuggling, Jetty

 Security: HTTP Smuggling, Apsis Pound load balancer

 PostgreSQL, advanced use of generate_series for data generation

 Web Security, Dompdf security issues details

 Tags

 Injection
SaltStack
Security
Cache
CVE
BlockReplace
HTML
HAProxy
Nginx
Proxy
Drupal
Accumulated
Plone
RewriteMap
PHP-fpm
APC
Dojo
Jetty
Managed
Statistics
mod_rewrite
Monitoring
Ajax
Linux
Performance
Mongodb
ZendFramework
PHP
Pound
Apache
Varnish
Js
Bug
jinja
Web
PostgreSQL
Bash
HTTP
Smuggling
js
HTML5

 About

 Some Friends

 	Blogs Makina Corpus

	Makina Corpus

	Pounard, processus.org

	Toupt

	François Gaudin

	Florent Lebreton

regilero's blog est mis à disposition selon les termes de la licence Creative Commons Attribution - Partage dans les Mêmes Conditions 3.0 France.
Fondé(e) sur une œuvre à http://regilero.github.io.

